World Library  

QR link for Estimating Return Levels from Maxima of Non-stationary Random Sequences Using the Generalized Pwm Method : Volume 15, Issue 6 (23/12/2008)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Estimating Return Levels from Maxima of Non-stationary Random Sequences Using the Generalized Pwm Method : Volume 15, Issue 6 (23/12/2008)

By Ribereau, P.

Click here to view

Book Id: WPLBN0003972693
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: Estimating Return Levels from Maxima of Non-stationary Random Sequences Using the Generalized Pwm Method : Volume 15, Issue 6 (23/12/2008)  
Author: Ribereau, P.
Volume: Vol. 15, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Guillou, A., Naveau, P., & Ribereau, P. (2008). Estimating Return Levels from Maxima of Non-stationary Random Sequences Using the Generalized Pwm Method : Volume 15, Issue 6 (23/12/2008). Retrieved from http://community.ebooklibrary.org/


Description
Description: Université Montpellier 2, Equipe Proba-Stat, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. Since the pioneering work of Landwehr et al. (1979), Hosking et al. (1985) and their collaborators, the Probability Weighted Moments (PWM) method has been very popular, simple and efficient to estimate the parameters of the Generalized Extreme Value (GEV) distribution when modeling the distribution of maxima (e.g., annual maxima of precipitations) in the Identically and Independently Distributed (IID) context. When the IID assumption is not satisfied, a flexible alternative, the Maximum Likelihood Estimation (MLE) approach offers an elegant way to handle non-stationarities by letting the GEV parameters to be time dependent. Despite its qualities, the MLE applied to the GEV distribution does not always provide accurate return level estimates, especially for small sample sizes or heavy tails. These drawbacks are particularly true in some non-stationary situations. To reduce these negative effects, we propose to extend the PWM method to a more general framework that enables us to model temporal covariates and provide accurate GEV-based return levels. Theoretical properties of our estimators are discussed. Small and moderate sample sizes simulations in a non-stationary context are analyzed and two brief applications to annual maxima of CO2 and seasonal maxima of cumulated daily precipitations are presented.

Summary
Estimating return levels from maxima of non-stationary random sequences using the Generalized PWM method

Excerpt
Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J.: Statistics of Extremes: Theory and Applications, Wiley Series in Probability and Statistics, 2004.; Azais, J. M. and Bardet, J. M.: Le modèle linéaire par l'exemple, régression, analyse de la variance et plans d'expériences illustrés avec R, SAS et Splus, Dunod, 2005.; Coles, S. G.: An introduction to statistical modeling of extreme values, Springer, 2001.; Coles, S. G. and Dixon, M. J.: Likelihood-based inference of extreme value models, Extremes, 2, 5–23, 1999.; Cooley, D., Nychka, D., and Naveau, P.: Bayesian Spatial Modeling of Extreme Precipitation Return Levels, J. Amer. Statist. Assoc., 102–479, 824–840, 2007.; de Haan, L. and Ferreira A.: Extreme Value Theory: An Introduction, Springer Series in Operations Research, 2006.; Diebolt, J., Guillou, A., Naveau, P., and Ribereau, P.: Improving probability-weighted moment methods for the generalized extreme value distribution, REVSTAT – Statistical Journal, 6–1, 33–50, 2008.; El Adlouni, S. and Ouarda, T. B. M. J.: Comparaison des méthodes d'estimation des paramètres du modèle GEV non-stationnaire, Revue des Sciences de l'Eau, 21(1), 35–50, 2008.; El Adlouni, S., Ouarda, T. B. M. J., Zhang, X., Roy, R., and Bobée, B.: Generalized maximum likelihood estimators for the nonstationary generalized extreme value model, Water Resour. Res., 43, W03410, doi:10.1029/2005WR004545, 2007.; Embrechts, P., Klüppelberg, C., and Mikosch, T.: Modelling Extremal Events for Insurance and Finance, vol 33, Applications of Mathematics, Springer-Verlag, Berlin, 1997.; Greenwood, J. A., Landwehr, J. M., Matalas, N. C., and Wallis, J. R.: Probability-weighted moments: definition and relation to parameters of several distributions expressable in inverse form, Water Resour. Res., 15, 1049–1054, 1979.; Gros, V., Bonsang, B., Martin, D., Novelli, P. C., and Kazan, V.: Short term carbon monoxide measurements at Amsterdam Island: estimations of biomass burning emissions rates, Chemosphere, 1, 163–172, doi:10.1016/S1465-9972(99)00009-4, 1999.; Hosking, J. R. M.: L-moments: analysis and estimation of distributions using linear combinations of order statistics, J. R. Stat. Soc., 52, 105–124, 1990.; Hosking, J. R. M., Wallis, J. R., and Wood, E. F.: Estimation of the generalized extreme-value distribution by the method of probability-weighted moments, Technometrics, 27, 251–261, 1985.; IPCC Climate Change: Synthesis Report, http://www.ipcc.ch/ipccreports/, 2007.; Katz, R., Parlange, M., and Naveau, P.: Extremes in hydrology, Adv. Water Resour., 25, 1287–1304, doi:10.1016/S0309-1708(02)00056-8, 2002.; Kharin, V. V., Zwiers, F. W., Zhang, X., and Hegerl, G. C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations, J. Climate, 20, 1419–1444, 2007.; Landwehr, J., Matalas, N., and Wallis, J. R.: Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles, Water Resour. Res., 15, 1055–1064, 1979.; Lye, L. M., Hapuarachchi, K. P., and Ryan., S.: Bayes estimation of the extreme-value reliability function, IEEE Trans. Reliab., 42, 641–644, doi:10.1109/24.273598, 1993.; Smith, R. L.: Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72, 69–90, 1985.; Venables, W. N. and Ripley, B. D.: Modern Applied Statistics With S, Springer, 2002.; Zhang, J.: Likelihood Moment Estimation for the Generalized Pareto Distribution, Aust. NZ. J. Stat., 49, 69–77, doi:10.1111/j.1467-842X.2006.00464.x, 2007.

 

Click To View

Additional Books


  • Grid Resolution Dependence in the Recons... (by )
  • A Lagrangian Approach to the Loop Curren... (by )
  • Calibration of a Radiocarbon Age : Volum... (by )
  • Nonlinear Equilibrium Structure of Thin ... (by )
  • Optimal Solution Error Covariance in Hig... (by )
  • Using Magnetic Fluids to Simulate Convec... (by )
  • On the Scaling Characteristics of Observ... (by )
  • A Monte Carlo Simulation of Magnetic Fie... (by )
  • Egs Richardson Agu Chapman Nvag3 Confere... (by )
  • Patch Behaviour and Predictability Prope... (by )
  • Brief Communication Stratospheric Winds,... (by )
  • Generation of Weakly Nonlinear Nonhydros... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.