World Library  

QR link for Seasonal Variation of Aerosol Water Uptake and Its Impact on the Direct Radiative Effect at Ny-ålesund, Svalbard : Volume 14, Issue 6 (17/03/2014)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Seasonal Variation of Aerosol Water Uptake and Its Impact on the Direct Radiative Effect at Ny-ålesund, Svalbard : Volume 14, Issue 6 (17/03/2014)

By Rastak, N.

Click here to view

Book Id: WPLBN0003974799
Format Type: PDF Article :
File Size: Pages 45
Reproduction Date: 2015

Title: Seasonal Variation of Aerosol Water Uptake and Its Impact on the Direct Radiative Effect at Ny-ålesund, Svalbard : Volume 14, Issue 6 (17/03/2014)  
Author: Rastak, N.
Volume: Vol. 14, Issue 6
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Wideqvist, U., Silvergren, S., Zieger, P., Riipinen, I., Svenningsson, B., Ström, J.,...Tesche, M. (2014). Seasonal Variation of Aerosol Water Uptake and Its Impact on the Direct Radiative Effect at Ny-ålesund, Svalbard : Volume 14, Issue 6 (17/03/2014). Retrieved from http://community.ebooklibrary.org/


Description
Description: Department of Applied Environmental Science (ITM) and Bert Bolin Centre for Climate Research, Stockholm University, Sweden. In this study we investigated the impact of water uptake by aerosol particles in ambient atmosphere on their optical properties and their direct radiative effect (ADRE, W m−2) in the Arctic at Ny-Ålesund, Svalbard, during 2008. To achieve this, we combined three models, a hygroscopic growth model, Mie model and a radiative transfer model, with an extensive set of observational data. We found that the seasonal variation of dry aerosol scattering coefficients showed minimum values during the summer season and the beginning of fall (July, August and September), when small particles (< 100 nm in diameter) dominate the aerosol size distribution. The maximum scattering by dry particles was observed during Arctic haze period (March, April and May) when average size of the particles was larger. Considering the hygroscopic growth of aerosol particles in the ambient atmosphere had a significant impact on the aerosol scattering coefficients: the aerosol scattering coefficients were enhanced by on average a factor of 4.30 ± 2.26 (mean ± standard deviation), with lower values during the haze period (March, April, May) as compared to summer and fall. Hygroscopic growth of aerosol particles was found to cause 1.6 to 3.7 times more negative ADRE on the surface, with the smallest effect during the haze period (March, April and May) and the highest during late summer and beginning of fall (July, August and September).

Summary
Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard

Excerpt
Aas, W., Solberg, S., Manø, S., and Yttri, K. E.: Overvåking av langtransportert forurenset luft og nedbør. Atmosfærisk tilførsel, 2008, OR 22/2009 (SFT (Klif) rapport nr 1051/2009), Norsk institutt for luftforskning, Kjeller, 2009.; Achtert, P., Birmili, W., Nowak, A., Wehner, B., Wiedensohler, A., Takegawa, N., Kondo, Y., Miyazaki, Y., Hu, M., and Zhu, T.: Hygroscopic growth of tropospheric particle number size distributions over the North China Plain, J. Geophys. Res., 114, D00G07, doi:10.1029/2008JD010921, 2009.; Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.; Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, 2.0.CO;2>doi:10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2, 1996.; Atwater, M. A.: Planetary albedo changes due to aerosols, Science, 170, 64–66, doi:10.1126/science.170.3953.64, 1970.; Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, John Wiley & Sons, INC, New York, 1983.; Boucher, O. and Lohmann, U.: The sulfate-CCN-cloud albedo effect, Tellus B, 47, 281–300, doi:10.1034/j.1600-0889.47.issue3.1.x, 1995.; Carrico, C. M., Rood, M. J., Ogren, J. A., Neususs, C., Wiedensohler, A., and Heintzenberg, J.: Aerosol optical properties at Sagres, Portugal during ACE-2, Tellus B, 52, 498–525, 2000.; Chang, H. and Charalampopoulos, T. T.: Determination of the wavelength dependence of refractive indices of flame soot, Proc. R. Soc. London A, 430, 577–591, 1990.; Charlson, R. J. and Pilat, M. J.: Climate: the influence of aerosols, J. Appl. Meteorol., 8, 1001–1002, 2.0.CO;2>doi:10.1175/1520-0450(1969)008<1001:CTIOA>2.0.CO;2, 1969.; Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate forcing by antlropogenic aerosols, Science, 255, 423–430, 1992.; Coakley, J. A., Cess, R. D., and Yurevich, F. B.: The effect of tropospheric aerosols on the Earth's radiation budget: a parameterization for climate models, J. Atmos. Sci., 40, 116–138, 2.0.CO;2>doi:10.1175/1520-0469(1983)040<0116:TEOTAO>2.0.CO;2, 1983.; Covert, D. S. and Heintzenberg, J.: Size distributions and chemical properties of aerosol at Ny-Ålesund, Svalbard, Atmos. Environ. A-Gen., 27, 2989–2997, 1993.; Di Pierro, M., Jaeglé, L., Eloranta, E. W., and Sharma, S.: Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012), Atmos. Chem. Phys., 13, 7075–7095, doi:10.5194/acp-13-7075-2013, 2013.; Eldering, A.: Aerosol optical properties during INDOEX based on measured aerosol particle size and composition, J. Geophys. Res., 107, 8001, doi:10.1029/2001JD001572, 2002.; Engelhart, G. J., Asa-Awuku, A., Nenes, A., and Pandis, S. N.: CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937–3949, doi:10.5194/acp-8-3937-2008, 2008.; Engvall, A.-C., Ström, J., Tunved, P., Krejci, R., Schlager, H., and Minikin, A.: The radiative

 

Click To View

Additional Books


  • Global Indirect Aerosol Effects: a Revie... (by )
  • Uncertainty Analysis for Estimates of th... (by )
  • The Global Impact of the Transport Secto... (by )
  • Importance of Mineral Cations and Organi... (by )
  • Lidar and in Situ Observations of Contin... (by )
  • Simulating Gas-aerosol-cirrus Interactio... (by )
  • Total Sulphate Vs. Sulphuric Acid Monome... (by )
  • Oxalic Acid as a Heterogeneous Ice Nucle... (by )
  • Analysis of a Summer Smog Episode in the... (by )
  • Kinetic Nucleation and Ions in Boreal Fo... (by )
  • Light Induced Conversion of Nitrogen Dio... (by )
  • Intercomparison of O3 Profiles Observed ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.