World Library  

QR link for Influence of Semi-volatile Species on Particle Hygroscopic Growth : Volume 9, Issue 1 (22/01/2009)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Influence of Semi-volatile Species on Particle Hygroscopic Growth : Volume 9, Issue 1 (22/01/2009)

By Villani, P.

Click here to view

Book Id: WPLBN0003976935
Format Type: PDF Article :
File Size: Pages 27
Reproduction Date: 2015

Title: Influence of Semi-volatile Species on Particle Hygroscopic Growth : Volume 9, Issue 1 (22/01/2009)  
Author: Villani, P.
Volume: Vol. 9, Issue 1
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Monier, M., Sellegri, K., Laj, P., & Villani, P. (2009). Influence of Semi-volatile Species on Particle Hygroscopic Growth : Volume 9, Issue 1 (22/01/2009). Retrieved from

Description: UMR6016, Laboratoire de Météorologie Physique (LaMP), Observatoire de Physique du Globe de Clermont-Ferrand Université Blaise Pascal, Clermont-Ferrand, France. The hygroscopic properties of aerosol particles are often related to their content of soluble material, on the basis of the Kohler theory. Recent studies, however, seem to indicate that the role of aerosol particle semi-volatile fraction properties has been underestimated. In this study, we use a novel method based on a Tandem Differential Mobility Analyser (TDMA) system combining particle volatilization and humidification conditioning (VH-TDMA) to test the effect of the gentle volatilization of a small fraction of the atmospheric particles on the particle hygroscopic growth in several environments (urban to remote). Results show that the particle hygroscopic properties can either be enhanced or decreased after thermal conditioning of the particle at moderate temperatures (50 to 110°C). The hygroscopic growth factor changes induced by volatilization indicate that some volatile compounds, although present at low concentrations, drastically influence the hygroscopic growth of particles in the way that can not be predicted by the Kohler theory at equilibrium.

Influence of semi-volatile species on particle hygroscopic growth

Andrews, E. and Larson, S. M.: Effect of surfactant layers on the size changes of aerosol particles as a function of relative humidity, Environ. Sci. Technol. 27, 857–865, 1993.; Ansari, A. S. and Pandis, S. N.: Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior, Environ. Sci. Technol., 34, 71–77, 2000.; Berg, O. H., E. Swietlicki, G. Frank, B.G. Martinsson, S.-I. Cederfelt, P. Laj, L. Ricci, A. Berner, U., Dusek, Z., Galambos, N. S., Mesfin, B., Yuskiewicz, A., and Wiedensohler, F. S.: Comparison of observed and modeled hygroscopic behavior of atmospheric particles, Contributions to atmospheric physics, 71(1), 47–64, 1998b.; Brooks, S. D., Garland, R. M., Wise, M. E., Prenny, A. J., Cushing, M., Hewitt, E., and Tolbert, M. A.: Phase changes in internally mixed maleic acid/ammonium sulfate aerosols, J. Geophys. Res., 108(D15), 4487, doi:10.1029/2002JD003204, 2003.; Cantrell, W., Shaw, G., Benner, R., and Veazey, D.: Evidence for sulfuric acid coated particles in the arctic air mass. Geophys. Res. Lett., 24 (23), 3005–3008, 1997.; Chen, Y. Y. and Lee, W. M. G.: Hygroscopic properties of inorganic-salt aerosol with surface-active organic compounds, Chemosphere, 38(10), 2431–2448, 1999.; Corrigan, C. E. and Novakov, T.: Cound condensation nucleus activity of organic compounds: a laboratory study, Atmos. Environ., 33, 2661–2668, 1999.; Cruz, C. N. and Pandis, S. N.: The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol, J. Geophys. Res., 103(D13), 111–123, 1998.; Cruz, C. N. and Pandis, S. N.: Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol, Environ. Sci. Technol., 34, 4313–4319, 2000.; Decesari, S., Facchini, M. C., Mircea, M., Cavalli, F., and Fuzzi, S.: Solubility properties of surfactants in atmospheric aerosol and cloud/fog water samples, J. Geophys. Res., 108(D21), 4685, doi:10.1029/2003JD003566, 2003.; Dua, S. K., Hopke, P. K., and Raunemaa, T.: Hygroscopicity of diesel aerosols, Water Air Soil Poll., 112, 247–257, 1998.; Hameri, K., Rood, M. J., and Hansson, H. C.: Hygroscopic properties of a NaCl aerosol coated with organic compounds: J. Aerosol Sci., 23, S437–S440, 1992.; Gysel, M., Weingartner, E., and Baltensperger, U.: Hygroscopic of aerosol particles at low temperature. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols, Environ. Sci. Technol., 36, 63–68, 2002.; Hameri, K., Charlson, R. J., Hansson, H. C., and Jacobson, M.: Hygroscopic properties of ammonium sulphate aerosols mixed with slightly soluble organic compound, J. Aerosol Sci., 28(S1), S153–S154, 1997.; Hänel, G.: The properties of atmospheric aerosol as function of the relative humidity at the thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 74–183, 1976.; Hanssson, H. C., Rood, M. J., Koloutsou-Vakakis, S., Hameri, K., Orsini, D., and Wiedensohler, A.: NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds, J. Atmos. Chem., 31, 321–346, 1998.; Hennig, T., Massling, A., Brechtel, F. J., and Wiedensohler, A.: A tandem DMA for highly temperature-stabilized hygroscopic particle growth measurement between 90% and 95% relative humidity, Aerosol Sci., 36, 1210–1223, 2005.; Huff Hartz, K. E., Tischuk, J. E., Chan, M. N., Chan, C. K., Donahue, N. M., and Pandis, S. N.: Cloud condensation nuclei activation of limited solubility organic aerosol. Atmos. Environ., 40, 605–617, 2006.; Johnson, G. R., Ristovski, Z., and Morawska, L.: Method for measuringthe hygroscopic behaviour of lower volatility fractions in an internally mixed aerosol, J. Aerosol Sci., 35, 443–455, 2004.; Joutsensaari, J., Vaattovaara, P., Vesterinen, M., Hämeri, K., and Laaksonen, A.: A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles, Atmos. Chem. Phys., 1, 51–60, 2001.; Kerminem, V. M.: The effects of particle chemical character and a


Click To View

Additional Books

  • Chemistry of Sprite Discharges Through I... (by )
  • Exploring the Atmospheric Chemistry of N... (by )
  • Comparison of Emission Ratios from On-ro... (by )
  • Geophysical Validation of Sciamachy Limb... (by )
  • Novel Methods for Predicting Gas–particl... (by )
  • Aircraft Pollution: a Futuristic View : ... (by )
  • Measurements of Pollution in the Troposp... (by )
  • Secondary Organic Aerosol Formation from... (by )
  • Co2 Flux History 1982–2001 Inferred from... (by )
  • Uptake of No3 and N2O5 to Saharan Dust, ... (by )
  • A New Method for Evaluating the Impact o... (by )
  • 3-d Chemistry-transport Model Polair: Nu... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.