World Library  

QR link for Seasonal Changes in the Tropospheric Carbon Monoxide Profile Over the Remote Southern Hemisphere Evaluated Using Multi-model Simulations and Aircraft Observations : Volume 14, Issue 20 (03/11/2014)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Seasonal Changes in the Tropospheric Carbon Monoxide Profile Over the Remote Southern Hemisphere Evaluated Using Multi-model Simulations and Aircraft Observations : Volume 14, Issue 20 (03/11/2014)

By Fisher, J. A.

Click here to view

Book Id: WPLBN0003980131
Format Type: PDF Article :
File Size: Pages 48
Reproduction Date: 2015

Title: Seasonal Changes in the Tropospheric Carbon Monoxide Profile Over the Remote Southern Hemisphere Evaluated Using Multi-model Simulations and Aircraft Observations : Volume 14, Issue 20 (03/11/2014)  
Author: Fisher, J. A.
Volume: Vol. 14, Issue 20
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Langenfelds, R. L., Wilson, S. R., Zeng, G., Emmons, L. K., Fisher, J. A., Williams, J. E.,...Steele, L. P. (2014). Seasonal Changes in the Tropospheric Carbon Monoxide Profile Over the Remote Southern Hemisphere Evaluated Using Multi-model Simulations and Aircraft Observations : Volume 14, Issue 20 (03/11/2014). Retrieved from http://community.ebooklibrary.org/


Description
Description: University of Wollongong, Wollongong, New South Wales, Australia. We use aircraft observations from the 1991–2000 Cape Grim Overflight Program and the 2009–2011 HIAPER Pole-to-Pole Observations (HIPPO), together with output from four chemical transport and chemistry-climate models, to better understand the vertical distribution of carbon monoxide (CO) in the remote Southern Hemisphere. Observed CO vertical gradients at Cape Grim vary from 1.6 ppbv km−1 in austral autumn to 2.2 ppbv km−1 in austral spring. CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific during HIPPO, despite major differences in time periods, flight locations, and sampling strategies between the two datasets. Using multi-model simulations from the Southern Hemisphere Model Intercomparison Project (SHMIP), we find that observed CO vertical gradients in austral winter-spring are well-represented in models and can be attributed to primary CO emissions from biomass burning. In austral summer-autumn, inter-model variability in simulated gradients is much larger, and two of the four SHMIP models significantly underestimate the Cape Grim observations. Sensitivity simulations show that CO vertical gradients at this time of year are driven by long-range transport of secondary CO of biogenic origin, implying a large sensitivity of the remote Southern Hemisphere troposphere to biogenic emissions and chemistry. Inter-model variability in summer-autumn gradients can be explained by differences in both the chemical mechanisms that drive secondary production of CO from biogenic sources and the vertical transport that redistributes this CO throughout the Southern Hemisphere. This suggests that the CO vertical gradient in the remote Southern Hemisphere provides a sensitive test of the chemistry and transport processes that define the chemical state of the background atmosphere.

Summary
Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

Excerpt
Archibald, A., Jenkin, M., and Shallcross, D.: An isoprene mechanism intercomparison, Atmos. Environ., 44, 5356–5364, 2010.; Arneth, A., Miller, P. A., Scholze, M., Hickler, T., Schurgers, G., Smith, B., and Prentice, I. C.: CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry, Geophys. Res. Lett., 34, L18813, doi:10.1029/2007GL030615, 2007a.; Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, doi:10.5194/acp-7-31-2007, 2007b.; Bowman, K. P.: Transport of carbon monoxide from the tropics to the extratropics, J. Geophys. Res.-Atmos., 111, D02107, doi:10.1029/2005JD006137, 2006.; Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J.-F., Granier, C., and Tie, X.: MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description, J. Geophys. Res.-Atmos., 103, 28265–28289, 1998.; Butler, T. M., Taraborrelli, D., Brühl, C., Fischer, H., Harder, H., Martinez, M., Williams, J., Lawrence, M. G., and Lelieveld, J.: Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign, Atmos. Chem. Phys., 8, 4529–4546, doi:10.5194/acp-8-4529-2008, 2008.; Chatfield, R., Guo, Z., Sachse, G., Blake, D., and Blake, N.: The subtropical global plume in the Pacific Exploratory Mission-Tropics A (PEM-Tropics A), PEM-Tropics B, and the Global Atmospheric Sampling Program (GASP): how tropical emissions affect the remote Pacific, J. Geophys. Res.-Atmos., 107, 4278, doi:10.1029/2001JD000497, 2002.; Crounse, J. D., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Peroxy radical isomerization in the oxidation of isoprene, Phys. Chem. Chem. Phys., 13, 13607–13613, 2011.; Crounse, J. D., Knap, H. C., Ørnsø, K. B., Jørgensen, S., Paulot, F., Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric fate of methacrolein. 1. Peroxy radical isomerization following addition of OH and O2, J. Phys. Chem.-US, 116, 5756–5762, 2012.; De Laat, A., Gloudemans, A., Aben, I., Krol, M., Meirink, J., van der Werf, G., and Schrijver, H.: SCIAMACHY carbon monoxide total columns: statistical evaluation and comparison with CTM results, J. Geophys. Res., 112, D12310, doi:10.1029/2006JD008256, 2007.; Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, doi:10.5194/acp-6-4321-2006, 2006.; Deutscher, N. M., Griffith, D. W. T., Bryant, G. W., Wennberg, P. O., Toon, G. C., Washenfelder, R. A., Keppel-Aleks, G., Wunch, D., Yavin, Y., Allen, N. T., Blavier, J.-F., Jiménez, R., Daube, B. C., Bright, A. V., Matross, D. M., Wofsy, S. C., and Park, S.: Total column CO2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles, Atmos. Meas. Tech., 3, 947–958, doi:10.5194/amt-3-947-2010, 2010.; Duncan, B., L

 

Click To View

Additional Books


  • Impact of Chinese So2 Emissions on Submi... (by )
  • Ice Crystal Concentrations in Wave Cloud... (by )
  • On the Importance of Cascading Moisture ... (by )
  • Temperature-dependent Accumulation Mode ... (by )
  • Seasonal and Inter-annual Variations in ... (by )
  • Variability and Budget of Co2 in Europe:... (by )
  • Extinction Efficiencies of Coated Absorb... (by )
  • Key Aspects of Stratospheric Tracer Mode... (by )
  • Source-receptor Matrix Calculation with ... (by )
  • Aerosol Forecast Over the Mediterranean ... (by )
  • The First Estimates of Global Nucleation... (by )
  • Observations of In-situ Generated Gravit... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.