World Library  

QR link for Data Assimilation of Stratospheric Constituents: a Review : Volume 7, Issue 22 (21/11/2007)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Data Assimilation of Stratospheric Constituents: a Review : Volume 7, Issue 22 (21/11/2007)

By Lahoz, W. A.

Click here to view

Book Id: WPLBN0003981239
Format Type: PDF Article :
File Size: Pages 29
Reproduction Date: 2015

Title: Data Assimilation of Stratospheric Constituents: a Review : Volume 7, Issue 22 (21/11/2007)  
Author: Lahoz, W. A.
Volume: Vol. 7, Issue 22
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2007
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Fonteyn, D., Swinbank, R., Errera, Q., & Lahoz, W. A. (2007). Data Assimilation of Stratospheric Constituents: a Review : Volume 7, Issue 22 (21/11/2007). Retrieved from http://community.ebooklibrary.org/


Description
Description: Data Assimilation Research Centre, University of Reading, UK. The data assimilation of stratospheric constituents is reviewed. Several data assimilation methods are introduced, with particular consideration to their application to stratospheric constituent measurements. Differences from meteorological data assimilation are outlined. Historically, two approaches have been used to carry out constituent assimilation. One approach has carried constituent assimilation out as part of a Numerical Weather Prediction system; the other has carried it out in a standalone chemical model, often with a more sophisticated representation of chemical processes. Whereas the aim of the Numerical Weather Prediction approach has been to improve weather forecasts, the aims of the chemical model approach have included providing chemical forecasts and analyses of chemical constituents. A range of constituent assimilation systems developed in these two areas is presented and strengths and weaknesses discussed. The use of stratospheric constituent data assimilation to evaluate models, observations and analyses, and to provide analyses of constituents, monitor ozone, and make ozone forecasts is discussed. Finally, the current state of affairs is assessed, future directions are discussed, and potential key drivers identified.

Summary
Data assimilation of stratospheric constituents: a review

Excerpt
Peuch, A., Thépaut, J.-N., and Pailleux, J.: Dynamical impact of total-ozone observations in a four-dimensional variational assimilation, Q. J. Roy. Meteor. Soc., 126, 1641–1659, 2000.; Pham, D. T.: Stochastic methods for sequential data assimilation in strongly nonlinear systems, Mon. Weather Rev., 129, 1194–1207, 2001.; Plumb, R. A. and Ko, M. K. W.: Interrelationships between mixing ratios of long-lived stratospheric constituents, J. Geophys. Res., 97, 10 145–10 156, 1992.; Polavarapu, S., Ren, S., Rochon, Y., et al.: Data assimilation with the Canadian Middle Atmosphere Model, Atmos.-Ocean, 43, 77–100, 2005a.; Polavarapu, S., Shepherd, T. G., Rochon, Y., and Ren, S.: Some challenges of middle atmosphere data assimilation, Q. J. Roy. Meteor. Soc., 131, 3513–3527, 2005b.; Raspollini, P., Belotti, C., Burgess, A., et al.: MIPAS level 2 operational analyses, Atmos. Chem. Phys., 6, 5605–5630, 2006.; Rawlins, F., Ballard, S. P., Bovis, K. J., et al.: The Met Office global four-dimensional variational data assimilation scheme, Q. J. Roy. Meteor. Soc., 133, 347–362, 2007.; Riishøjgaard, L.-P.: On four-dimensional variational assimilation of ozone data in weather-prediction models, Q. J. Roy. Meteor. Soc., 122, 1545–1572, 1996.; Riishøjgaard, L.-P.: A direct way of specifying flow-dependent background error correlations for meteorological analysis systems, Tellus, 50, 42–57, 1998.; Riishøjgaard, L.-P., \vStajner, I., and Lou, G.-P.: The GEOS ozone data assimilation system, Adv. Space Res., 25, 1063–1072, 2000.; Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publishing Co., Singapore, 238 pp., 2000.; Roche, A. E., Kumer, J. B., Mergenthaler, J. L., et al.: The Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS: Experiment Description and Performance, J. Geophys. Res., 98, 10 763–10 775, 1993.; Rood, R. B.: Ozone assimilation, in: Data Assimilation for the Earth System, NATO ASI Series, edited by: Swinbank, R., Shutyaev, V. and Lahoz, W. A., Kluwer, 263–277, 2003.; Rösevall, J. D., Murtagh, D. P., and Urban, J.: Ozone depletion in the 2006/2007 Arctic winter, Geophys. Res. Lett., 34, L21809, doi:10.1029/2007GL030620, 2007a.; Rösevall, J. D., Murtagh, D. P., Urban, J., and Jones, A. K.: A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments, Atmos. Chem. Phys., 7, 899–911, 2007b.; Russell III, J. M., Gordley, L. L., Park, J. H., et al.: The Halogen Occultation Experiment, J. Geophys. Res., 98, 10 777–19 797, 1993.; Sassi, F., Boville, B. A., Kinnison, D., and Garcia, R. R.: The effects of interactive ozone chemistry on simulations of the middle atmosphere, Geophys. Res. Lett., 32, L07811, doi:10.1029/2004GL022131, 2005.; Saunders, R., Matricardi, M., and Brunel, P.: An improved fast radiative transfer model for assimilation of satellite radiance observations, Q. J. Roy. Meteor. Soc., 125, 1407–1426, 1999.; Schoeberl, M. R., Douglass, A. R., Zhu, Z., and Pawson, S.: A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems, J. Geophys. Res., 108, 4113, doi:10.1029/2002JD002652, 2003.; Segers, A. J., Eskes, H. J., van der A, R. J., et al.: Assimilation of GOME ozone profiles and a global chemistry-transport model, Q. J. Roy. Meteor. Soc., 131, 477–502, 2005.; Simmons, A. J., Hortal, M., Kelly, G., et al.: ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemishere and related events, J. Atmos. Sci., 62, 668–689, 2005.; SPARC: Assessment of upper tropospheric and lower stratospheric water vapour, WCRP-113, WMO/TD No. 1043, SPARC Report No. 2, edited by: Kley, D., Russell, J. M., and Phillips, C., 2000.; \vStajner, I.

 

Click To View

Additional Books


  • Global Evaluation of the Collection 5 Mo... (by )
  • The Millennium Water Vapour Drop in Chem... (by )
  • Ground-based Aerosol Climatology of Chin... (by )
  • Contribution of Fungi to Primary Biogeni... (by )
  • Impact of Heterogeneous Ice Nucleation b... (by )
  • Quantitative Performance Metrics for Str... (by )
  • De Praeceptis Ferendis: Good Practice in... (by )
  • Oxidation Capacity of the City Air of Sa... (by )
  • Characterization of Carbonaceous Aerosol... (by )
  • Hygroscopic Properties of Different Aero... (by )
  • Prediction of Gas/Particle Partitioning ... (by )
  • Ozone Production and Trace Gas Correlati... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.