World Library  

QR link for Modeling the Transport of Very Short-lived Substances Into the Tropical Upper Troposphere and Lower Stratosphere : Volume 9, Issue 5 (09/09/2009)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Modeling the Transport of Very Short-lived Substances Into the Tropical Upper Troposphere and Lower Stratosphere : Volume 9, Issue 5 (09/09/2009)

By Aschmann, J.

Click here to view

Book Id: WPLBN0003982503
Format Type: PDF Article :
File Size: Pages 33
Reproduction Date: 2015

Title: Modeling the Transport of Very Short-lived Substances Into the Tropical Upper Troposphere and Lower Stratosphere : Volume 9, Issue 5 (09/09/2009)  
Author: Aschmann, J.
Volume: Vol. 9, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Atlas, E. L., Sinnhuber, B. M., Schauffler, S. M., & Aschmann, J. (2009). Modeling the Transport of Very Short-lived Substances Into the Tropical Upper Troposphere and Lower Stratosphere : Volume 9, Issue 5 (09/09/2009). Retrieved from

Description: Institute of Environmental Physics, University of Bremen, Bremen, Germany. The transport of very short-lived substances into the tropical upper troposphere and lower stratosphere is investigated by a three-dimensional chemical transport model using archived convective updraft mass fluxes (or detrainment rates) from the European Centre for Medium-Range Weather Forecast's ERA-Interim reanalysis. Large-scale vertical velocities are calculated from diabatic heating rates. With this approach we explicitly model the large scale subsidence in the tropical troposphere with convection taking place in fast and isolated updraft events. The model calculations agree generally well with observations of bromoform and methyl iodide from aircraft campaigns and with ozone and water vapor from sonde and satellite observations. Using a simplified treatment of dehydration and bromine product gas washout we give a range of 1.6 to 3 ppt for the contribution of bromoform to stratospheric bromine, assuming a uniform source in the boundary layer of 1 ppt. We show that the most effective region for VSLS transport into the stratosphere is the West Pacific, accounting for about 55% of the bromine from bromoform transported into the stratosphere under the supposition of a uniformly distributed source.

Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere

Chipperfield, M.P.: New Version of the TOMCAT/SLIMCAT Off-Line Chemical Transport Model: Intercomparison of Stratospheric Tracer Experiments, Q. J. R. Meteorol. Soc., 132, 1179–1203, doi:10.1256/qj.05.51, 2006.; Dessler, A. E.: The effect of deep, tropical convection on the tropical tropopause layer, J. Geophys. Res., 107(D3), 4033, doi:10.1029/2001JD000511, 2002.; Dessler, A. E. and Sherwood, S. C., Effect of convection on the summertime extratropical lower stratosphere, J. Geophys. Res., 109, D23301, doi:10.1029/2004JD005209, 2004.; Folkins, I., Kelly, K. K., and Weinstock, E. M.: A simple explanation for the increase in relative humidity between 11 and 14 km in the tropics, J. Geophys. Res., 4736, doi:10.1029/2002JD002185, 2002.; Fueglistaler, S., Bonazzola, M., Haynes, P. H., and Peter, T., Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics, J. Geophys. Res., 110, D08107, doi:10.1029/2004JD005516, 2005.; Fueglistaler, S., Legras, B., Beljaars, A., Morcrette, J. J., Simmons, A., Tompkins, A. M., Uppala, S.: The diabatic heat budget of the upper troposphere and lower/mid stratosphere in ECMWF reanalyses, Q. J. Roy. Meteor. Soc., 135(638), 21–37, 2009.; Gettelman, A., Lauritzen, P. H., Park, M., and Kay, J. E.: Processes regulating short-lived species in the tropical tropopause layer, J. Geophys. Res., 114, D13303, doi:10.1029/2009JD011785, 2009.; Grooß, J. U. and Russell, J. M.: III, Technical note: A stratospheric climatology for O3, H2O, CH4, NOx, HCl and HF derived from HALOE measurements, Atmos. Chem. Phys., 5, 2797–2807, 2005.; Hanisco, T. F., Moyer, E. J., Weinstock, E. M., St. Clair, J. M., Sayres, D. S., Smith, J. B., Lockwood, R., Anderson, J. G., Dessler, A. E., Keutsch, F. N., Spackman, J. R., Read, W. G., and Bui, T. P.: Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899, 2007.; Holton, J. R. and Gettelman, A.: Horizontal transport and the dehydration of the stratosphere, Geophys. Res. Lett., 28, 2799–2802, 2001.; Hossaini, R., Chipperfield, M. P., Monge-Sanz, B. M., Richards, N. A. D., Atlas, E., and Blake, D. R.: Bromoform and dibromomethane in the tropics: a 3-D model study of chemistry and transport, Atmos. Chem. Phys. Discuss., 9, 16811–16851, 2009; IFS Documentation – Cy31r1,, access: 14 August 2009, 2007.; Kerkweg, A., Jöckel, P., Warwick, N., Gebhardt, S., Brenninkmeijer, C. A. M., and Lelieveld, J.: Consistent simulation of bromine chemistry from the marine boundary layer to the stratosphere – Part 2: Bromocarbons, Atmos. Chem. Phys., 8, 5919–5939, 2008.; Marti, J. and Mauersberger, K.: A survey and new measurements of ice vapor pressure at temperatures between 170 and 250 K, Geophys. Res. Lett. 20, 363–366, 1993; McLinden, C. A., Olsen, S. C., Hannegan, B., Wild, O., Prather, M. J., and Sundet, J.: Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux, J. Geophys. Res., 105(D11), 14653–14665, 2000.; Nielsen, J. E., and Douglass, A. R.: A simulation of bromoform's contribution to stratospheric bromine, J. Geophys. Res., 106(D8), 8089–8100, 2001.; Quack, B. and Wallace, D. W. R.: Air-sea flux of bromoform: Controls, rates, and implications, Global Biogeochem. Cycles, 17(1), p. 1023, doi:10.1029/2002GB001890, 2003.; Rasch, P. J., Mahowald, N. M., and Eaton, B. E.: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species, J. Geophys. Res., 102(D23), 28127–28138, 1997.; Sinnhuber, B. M., Weber, M., Amankwah, A., and Burrows, J. P.: Total ozone during the unusual Antarctic winter of 2002, Geophys. Res. Lett., 30(11), p. 1580, doi:10.1029/200


Click To View

Additional Books

  • A Novel Tandem Differential Mobility Ana... (by )
  • The Interaction of N2O5 with Mineral Dus... (by )
  • Injection of Mineral Dust Into the Free ... (by )
  • Deep Convective Injection of Boundary La... (by )
  • Ozone-driven Photochemical Formation of ... (by )
  • Change of Iron Species and Iron Solubili... (by )
  • Self-limited Uptake of Α-pinene-oxide to... (by )
  • Overview and Sample Applications of Smil... (by )
  • Validation of Ife-1.6 Sciamachy Limb Ozo... (by )
  • Multi-model Assessment of Stratospheric ... (by )
  • Methane Sulfonic Acid Enhanced Formation... (by )
  • Sources of Variations in Total Column Ca... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.