World Library  

QR link for Direct Observation of Two Dimensional Trace Gas Distributions with an Airborne Imaging Doas Instrument : Volume 8, Issue 22 (21/11/2008)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Direct Observation of Two Dimensional Trace Gas Distributions with an Airborne Imaging Doas Instrument : Volume 8, Issue 22 (21/11/2008)

By Heue, K.-p.

Click here to view

Book Id: WPLBN0003982789
Format Type: PDF Article :
File Size: Pages 11
Reproduction Date: 2015

Title: Direct Observation of Two Dimensional Trace Gas Distributions with an Airborne Imaging Doas Instrument : Volume 8, Issue 22 (21/11/2008)  
Author: Heue, K.-p.
Volume: Vol. 8, Issue 22
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Broccardo, S. P., Ross, K. E., Walter, D., Heue, K., Beirle, S., Piketh, S. J.,...Platt, U. (2008). Direct Observation of Two Dimensional Trace Gas Distributions with an Airborne Imaging Doas Instrument : Volume 8, Issue 22 (21/11/2008). Retrieved from http://community.ebooklibrary.org/


Description
Description: Institut für Umweltphysik (IUP), Universität Heidelberg, Heidelberg, Germany. In many investigations of tropospheric chemistry information about the two dimensional distribution of trace gases on a small scale (e.g. tens to hundreds of metres) is highly desirable. An airborne instrument based on imaging Differential Optical Absorption Spectroscopy has been built to map the two dimensional distribution of a series of relevant trace gases including NO2, HCHO, C2H2O2, H2O, O4, SO2, and BrO on a scale of 100 m.

Here we report on the first tests of the novel aircraft instrument over the industrialised South African Highveld, where large variations in NO2 column densities in the immediate vicinity of several sources e.g. power plants or steel works, were measured. The observed patterns in the trace gas distribution are interpreted with respect to flux estimates, and it is seen that the fine resolution of the measurements allows separate sources in close proximity to one another to be distinguished.


Summary
Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument

Excerpt
Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O. W., and Platt, U.: Reactive Halogen Chemistry in Volcanic Plumes, J. Geophys. Res., 112, D06311, doi:10.1029/2006JD007206, 2007.; Beirle, S., Platt, U., von Glasow, R., Wenig, M., and Wagner, T.: Estimate of nitrogen oxide emission from shipping by satellite remote sensing, Geophys. Res. Lett., 31, L18102, doi:10.1029/2004GL020312, 2004.; Beirle, S., Platt, U., and Wagner, T.: Potential of monitoring nitrogen oxides with satellite instruments, Procceeding of The 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, http://www.eumetsat.int/Home/Main/Publications/Conference_and_Workshop_Proceedings/groups/cps/documents/document/pdf_conf_p48_s4_02_beirle_v.pdf, 12–16 June 2006.; Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S., and Orphal, J.: Atmospheric remote-sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231–794 nm range, J. Quant. Spectrosc. Ra., 61, 509–517, 1999.; Deutschmann, T. and Wagner, T.: Tracy User manual, Universität Heidelberg, 2007.; Grainger, J. and Ring, J.: Anomalous Fraunhofer line profiles, Nature, 193, 762, 1962.; Gomer, T., Brauers, T., Heintz, F., Stutz, J., and Platt, U.: MFC 1.98 m User Manual, Institut für Umweltphysik, 1996.; Hartl, A., Song, B. C., and Pundt, I.: 2-D reconstruction of atmospheric concentration peaks from horizontal long path DOAS tomographic measurements: parametrisation and geometry within a discrete approach, Atmos. Chem. Phys., 6, 847–861, 2006.; Heue, K.-P., Richter, A., Bruns, M., Burrows, J. P., v. Friedeburg, C., Platt, U., Pundt, I., Wang, P., and Wagner, T.: Validation of SCIAMACHY tropospheric NO2-columns with AMAXDOAS measurements, Atmos. Chem. Phys., 5, 1039–1051, 2005.; Heue, K.-P., Wagner, T., Broccardo, S. P., Piketh, S. J., Ross, K. E., and Platt, U.: Direct Observation of two dimensional trace gas distribution with an airborne Imaging DOAS instrument, Proceedings of the ESA Conference on Rockets and Balloons and related research, 4th–7th June 2007, Visby, Sweden, 2007.; Hermans, C., Vandaele, A. C., Carleer, M., Fally, S., Colin, R., Jenouvrier, A., Coquart, B., and Mérienne, M. F.: Absorption-cross sections of atmospheric constituents: NO2, O2 and H2O, Environ. Sci. Pollut. Res., 6(3), 151–158, 1999.; Lohberger, F., Hönninger, G., and Platt, U.: Ground-based imaging differential optical absorption spectroscopy of atmospheric gases, Appl. Optics, 43, 24, 4711–4717, 2004.; Rothman, L. S.: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition, J. Quant. Spectrosc. Ra., 60(5), 665–710, 1998.; Platt, U.: Differential Optical Absorbtion Spectroscopy (DOAS), in: Monitorting by spectroscopic techniques, edited by: Sigrist, M. W., New York: John Wiley & Sons, Inc., 1994.; Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Mérienne, M.-F., Jenouvrier, A., and Coquart, B.: Measurements of the NO2 Absorption Cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K, J. Quant. Spectrosc. Ra., 59, 171–184, 1997.; Wagner, T., Burrows, J. P., Deutschmann, T., Dix, B., von Friedeburg, C., Frieß, U., Hendrick, F., Heue, K.-P., Irie, H., Iwabuchi, H., Kanaya, Y., Keller, J., McLinden, C. A., Oetjen, H., Palazzi, E., Petritoli, A., Platt, U., Postylyakov, O., Pukite, J., Richter, A., van Roozendael, M., Rozanov, A., Rozanov, V., Sinreich, R., Sanghavi, S., and Wittrock, F.: Comparison of box-air-mass-factors and radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer models, Atmos. Chem. Phys., 7, 1809–1833, 200

 

Click To View

Additional Books


  • The Arctic Summer Atmosphere: an Evaluat... (by )
  • Source Attribution of the Changes in Atm... (by )
  • Formation of Aqueous-phase Α-hydroxyhydr... (by )
  • Climatic Effects of 1950–2050 Changes in... (by )
  • Global Distributions of Water Vapour Iso... (by )
  • Dimethylsulfide Gas Transfer Coefficient... (by )
  • Combined Assimilation of Iasi and Mls Ob... (by )
  • Long-term Trend of Surface Ozone at a Re... (by )
  • In Situ Measurements of Aerosols Optical... (by )
  • The Study of Emission Inventory on Anthr... (by )
  • Meteorology Applied to Urban Air Polluti... (by )
  • A Model Study on the Influence of Oversh... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.