World Library  

QR link for Radiative Consequences of Low-temperature Infrared Refractive Indices for Supercooled Water Clouds : Volume 13, Issue 7 (12/07/2013)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Radiative Consequences of Low-temperature Infrared Refractive Indices for Supercooled Water Clouds : Volume 13, Issue 7 (12/07/2013)

By Rowe, P. M.

Click here to view

Book Id: WPLBN0003992806
Format Type: PDF Article :
File Size: Pages 22
Reproduction Date: 2015

Title: Radiative Consequences of Low-temperature Infrared Refractive Indices for Supercooled Water Clouds : Volume 13, Issue 7 (12/07/2013)  
Author: Rowe, P. M.
Volume: Vol. 13, Issue 7
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Walden, V. P., Neshyba, S., & Rowe, P. M. (2013). Radiative Consequences of Low-temperature Infrared Refractive Indices for Supercooled Water Clouds : Volume 13, Issue 7 (12/07/2013). Retrieved from

Description: Department of Geography, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA. Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI) of water. Although conventional algorithms employ a temperature independent assumption (TIA), recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m−2 (in cold regions), while top-of-atmosphere fluxes are higher by as much as 3.4 W m−2 (in warm regions). Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

Hale, G. M. and Querry, M. R.: Optical constants of water in the 200-nm to 200-mm region, Appl. Optics, 12, 1973.; Bertie, J. E. and Lan, Z.: Infrared intensities of liquids XX: The intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 °C between 15,000 and 1 cm^-1, Appl. Spec., 50, 1047–1057, 1996.; Cesana, G., Kay, J. E., Chepfer, H., English, J. M., and de Boer, G.: Ubiquitous low-level liquid-containing Arctic clouds: new observations and climate model constraints from CALIPSO-GOCCP, Geophys Res. Lett., 39, L20804, doi:10.1029/2012GL053385, 2012.; Downing, H. D. and Williams, D.: Optical constants of water in the Infrared, J. Geophys. Res., 80, 1656–1661, 1975.; Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Radiat. Transf., 91, 233–244, 2005.; Garrett, T. J., Gerber, H., Baumgardner, D. G., Twohy, C. H., and Weinstock, E. M.: Small, highly reflective ice crystals in low-latitude cirrus, Geophys. Res. Lett., 30, 2132, doi:10.1029/2003GL018153, 2003.; Hogan, R. J., Illingworth, A. J., O'Connor, E. J., and Baptista, J. P. V. P.: Characterisitics of mixed-phase clouds, II. A climatology from ground-based lidar, Q. J. Roy. Meteorol. Soc., 129, 2117–2134, 2003.; Hu, Y., Rodier, S., Xu, K., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset, D.: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, D00H34, doi:10.1029/2009JD012384, 2010.; Intrieri, J. M.: An annual cycle of Arctic surface cloud forcing at SHEBA, J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000439, 2006.; IPCC: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.; Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for homogenous ice nucleation in aqueous solutions, Nature, 406, 611–614, 2000.; Warren, S. G. and Brandt, R. E.: Optical constants of ice from the ultraviolet to the microwave: a revised compilation, J. Geophys. Res., 113, D14220, doi:10.1029/2007JD009744, 1994.; Zasetsky, A. Y., Khalizov, A. F., and Sloan, J. J.: Local order and dynamics in supercooled water: a study by IR spectroscopy and molecular dynamic simulations, J. Chem. Phys., 121, 6941–6947, 2004.; Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., Solomon, S., Bettsand, R., Charlson, R., Chuang, C., Daniel, J. S., Genio, A. D., van Dorland, R., Feichter, J., Fuglestvedt, J., de F. Forster, P. M., Ghan, S. J., Jones, A., Kiehl, J. T., Koch, D., Land, C., Lean, J., Lohmann, U., Minschwaner, K., Penner, J. E., Roberts, D. L., Rodhe, H., Roelofs, G. J., Rotstayn, L. D., Schneider, T. L., Schumann, U., Schwartz, S. E., Schwarzkopf, M. D., Shine, K. P., Smith, S., Stevenson, D. S., Stordal, F., Tegen, I., and Zhang, Y.: Radiative forcing of climate change. In: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K.


Click To View

Additional Books

  • Aerosol Microphysics Simulations of the ... (by )
  • Quantifying the Impact of Boreal Forest ... (by )
  • A New Data Set of Soil Mineralogy for Du... (by )
  • Inverse Modelling-based Reconstruction o... (by )
  • Fast Transport from Southeast Asia Bound... (by )
  • Modelling Deep Convection and Its Impact... (by )
  • Corrigendum to Formation of Solid Partic... (by )
  • Mainz Isoprene Mechanism 2 (Mim2): an Is... (by )
  • Annual Evapotranspiration Retrieved Sole... (by )
  • Statistical Variability of Top of Atmosp... (by )
  • Variable Ccn Formation Potential of Regi... (by )
  • Trends, Interannual and Seasonal Variati... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.