World Library  

QR link for Lidar Observation of the 2011 Puyehue-cordón Caulle Volcanic Aerosols at Lauder, New Zealand : Volume 14, Issue 22 (18/11/2014)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Lidar Observation of the 2011 Puyehue-cordón Caulle Volcanic Aerosols at Lauder, New Zealand : Volume 14, Issue 22 (18/11/2014)

By Nakamae, K.

Click here to view

Book Id: WPLBN0003993510
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Lidar Observation of the 2011 Puyehue-cordón Caulle Volcanic Aerosols at Lauder, New Zealand : Volume 14, Issue 22 (18/11/2014)  
Author: Nakamae, K.
Volume: Vol. 14, Issue 22
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Uchino, O., Nagai, T., Morino, I., Liley, B., Nakamae, K., Sakai, T., & Yokota, T. (2014). Lidar Observation of the 2011 Puyehue-cordón Caulle Volcanic Aerosols at Lauder, New Zealand : Volume 14, Issue 22 (18/11/2014). Retrieved from http://community.ebooklibrary.org/


Description
Description: National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan. On 4 June 2011, the Puyehue-Cordón Caulle volcanic complex (40.6° S, 72.1° W) in Chile erupted violently and injected volcanic aerosols into the atmosphere. For the safety of civil aviation, continuous lidar observations were made at Lauder, New Zealand (45.0° S, 169.7° E), from 11 June through 6 July 2011. The purpose of our study is to quantify the influence of the volcanic ejections from large eruptions, and we use the data from the ground-based lidar observation. We analyzed lidar data at a wavelength of 532 nm and derived the backscattering ratio and depolarization ratio profiles. During June and July, within the altitude range of 10–15 km, the volcanic aerosols had high depolarization ratios (20–35%), an indication of non-spherical volcanic ash particles. The time series of the backscattering ratio during continuous observations had three peaks occurring at about 12-day intervals: 26.7 at 11.2 km on 11 June, 18.1 at 12.0 km on 23 June, and 5.3 at 11.1 km on 6 July. The optical depth of the volcanic aerosols was 0.45 on 11 June, when the continuous lidar observation started, 0.31 on 23 June, and 0.12 on 6 July. The depolarization ratio values remained high up to a month after the eruption, and the small wavelength exponent calculated from the backscattering coefficients at 532 nm and 1064 nm suggests that a major constituent of the volcanic aerosols was large, non-spherical particles. The presence of volcanic ash in the stratosphere might affect the error in Greenhouse gases Observing SATellite (GOSAT) XCO2 retrieval using the 1.6 μm band. We briefly discuss the influence of the increased aerosols on GOSAT products.

Summary
Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic aerosols at Lauder, New Zealand

Excerpt
Alados-Arboledas, L., Olmo, F. J., Ohvril, H. O., Teral, H., Arak, M., and Teral, K.: Evolution of solar radiative effects of Mount Pinatubo at ground level, Tellus B, 49, 190–198, 1997.; Ansmann, A., Tesche, M., Groß, S., Freudenthaler, V., Seifert, P., Hiebsch, A., Schmidt, J., Wandinger, U., Mattis, I., Müller, D., and Wiegner, M.: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, doi:10.1029/2010GL043809, 2010.; Ansmann, A., Tesche, M., Seifert, P., Groß, S., Freudenthaler, V., Apituley, A., Wilson, K. M., Serikov, I., Linnú, H., Heinold, B., Hiebsch, A., Schnell, F., Schmidt, J., Mattis, I., Wandinger, U., and Wiegner, M.: Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res., 116, D00U02, doi:10.1029/2010JD015567, 2011.; Ansmann, A., Seifert, P., Tesche, M., and Wandinger, U.: Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes, Atmos. Chem. Phys., 12, 9399–9415, doi:10.5194/acp-12-9399-2012, 2012.; Bernard, A. and Rose, W. I.: The injection of sulfuric acid aerosols in the stratosphere by El Chichon Volcano and its related hazards to the international air traffic, Nat. Hazards, 3, 59–67, 1990.; Bitar, L., Duck, T. J., Kristiansen, N. I., Stohl, A., and Beauchamp, S.: Lidar observations of Kasatochi volcano aerosols in the troposphere and stratosphere, J. Geophys. Res., 115, D00L13, doi:10.1029/2009JD013650, 2010.; Bluth, G. J. S., Doiron, S. D., Schnetzler, S. C., Krueger, A. J., and Walter, L. S.: Global tracking of the SO2 clouds from the June 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154, 1992.; Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Opt., 34, 2765–2773, 1995.; Clarisse, L., Hurtmans, D., Clerbaux, C., Hadji-Lazaro, J., Ngadi, Y., and Coheur, P.-F.: Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI), Atmos. Meas. Tech., 5, 581–594, doi:10.5194/amt-5-581-2012, 2012.; Deshler, T.: A review of global stratospheric aerosol: Measurements, importance, life cycle, and stratospheric aerosol, Atmos. Res., 90, 223–232, 2008.; Durant, A. J., Shaw, R. A., Rose, W. I., Mi, Y., and Ernst, G. G. J.: Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064, 2008.; Dzierma, Y. and Wehrmann, H.: On the likelihood of future eruptions in the Chilean Southern Volcanic Zone: interpreting the past century's eruption record based on statistical analyses, And. Geol., 39, 380–393, 2012.; Fernald, F. G.: Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23, 5, 652–653, 1984.; Gasteiger, J., Groß, S., Freudenthaler, V., and Wiegner, M.: Volcanic ash from Iceland over Munich: Mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys., 11, 2209–2223, doi:10.5194/acp-11-2209-2011, 2011.; Groß, S., Freudenthaler, V., Wiegner, M., Gasteiger, J., Geiß, A., and Schnell, F.: Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany, Atmos. Environ., 48, 85–96, 2012.; Haywood, J. M., Jones, A., Clarisse, L., Bourassa, A., Barnes, J., Telford, P., Bellouin, N., Boucher, O., Agnew, P., C

 

Click To View

Additional Books


  • A Review of Sea-spray Aerosol Source Fun... (by )
  • Comparison of the Hadgem2 Climate-chemis... (by )
  • Aerosol-precipitation Interactions in th... (by )
  • Interannual Variability of the Stratosph... (by )
  • On Condensational Growth of Clusters and... (by )
  • Impacts of Emission Reductions on Aeroso... (by )
  • Processing of Soot in an Urban Environme... (by )
  • Using a Moving Measurement Platform for ... (by )
  • Oh Initiated Heterogeneous Oxidation of ... (by )
  • The Isotopic Record of Northern Hemisphe... (by )
  • Ice Supersaturation as Seen from Tovs : ... (by )
  • Constraints on Asian Ozone Using Aura Te... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.