World Library  

QR link for Uncertainties in Future Climate Predictions Due to Convection Parameterisations : Volume 14, Issue 11 (05/06/2014)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Uncertainties in Future Climate Predictions Due to Convection Parameterisations : Volume 14, Issue 11 (05/06/2014)

By Rybka, H.

Click here to view

Book Id: WPLBN0003993884
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Uncertainties in Future Climate Predictions Due to Convection Parameterisations : Volume 14, Issue 11 (05/06/2014)  
Author: Rybka, H.
Volume: Vol. 14, Issue 11
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Tost, H., & Rybka, H. (2014). Uncertainties in Future Climate Predictions Due to Convection Parameterisations : Volume 14, Issue 11 (05/06/2014). Retrieved from

Description: Institute for Atmospheric Physics, University of Mainz, Mainz, Germany. In the last decades several convection parameterisations have been developed to consider the impact of small-scale unresolved processes in Earth System Models associated with convective clouds. Global model simulations, which have been performed under current climate conditions with different convection schemes, significantly differ among each other in the simulated transport of trace gases and precipitation patterns due to the parameterisation assumptions and formulations, e.g. the computation of convective rainfall rates, calculation of entrainment and detrainment rates etc. Here we address sensitivity studies comparing four different convection schemes under alternative climate conditions (with doubling of the CO2 concentrations) to identify uncertainties related to convective processes. The increase in surface temperature reveals regional differences up to 4 K dependent on the chosen convection parameterisation. These differences are statistically significant almost everywhere in the troposphere of the intertropical convergence zone. The increase in upper tropospheric temperature affects the amount of water vapour transported to the lower stratosphere, leading to enhanced water vapour contents between 40% and 60% at the cold point temperature in the Tropics. Furthermore, the change in transporting short-lived pollutants within the atmosphere is highly ambiguous for the lower and upper troposphere. These results reflect that different approaches to compute mass fluxes, detrainment levels or trigger functions determine the transport of short-lived trace gases from the planetary boundary layer to lower, middle or upper tropospheric levels. Finally, cloud radiative effects have been analysed, uncovering a shift in different cloud types in the Tropics, especially for cirrus and deep convective clouds. These cloud types induce a change in net cloud radiative forcing varying from 0.5 W m−2 to 2.0 W m−2.

Uncertainties in future climate predictions due to convection parameterisations

Barker, H. W. and Raisanen, P.: Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs, Q. J. Roy. Meteorol. Soc., 131, 3103–3122, doi:10.1256/qj.04.174, 2005.; Allen, D. J., Rood, R. B., Thompson, A. M., and Hudson, R. D.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res.-Atmos., 101, 6871–6881, doi:10.1029/95JD03408, 1996.; Arakawa, A.: The cumulus parameterization problem: Past, present, and future, J. Climate, 17, 2493–2525, 2.0.CO;2>doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2, 2004.; Arakawa, A. and Schubert, W. H.: Interaction of A Cumulus Cloud Ensemble With Large-scale Environment .1., J. Atmos. Sci., 31, 674–701, 2.0.CO;2>doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2, 1974.; Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global models, Q. J. Roy. Meteorol. Soc., 127, 869–886, doi:10.1256/smsqj.57308, 2001.; Bechtold, P., Chaboureau, J. P., Beljaars, A., Betts, A. K., Kohler, M., Miller, M., and Redelsperger, J. L.: The simulation of the diurnal cycle of convective precipitation over land in a global model, Q. J. Roy. Meteorol. Soc., 130, 3119–3137, doi:10.1256/qj.03.103, 2004.; Bitz, C. M., Shell, K. M., Gent, P. R., Bailey, D. A., Danabasoglu, G., Armour, K. C., Holland, M. M., and Kiehl, J. T.: Climate Sensitivity of the Community Climate System Model, Version 4, J. Climate, 25, 3053–3070, doi:10.1175/JCLI-D-11-00290.1, 2012.; Bony, S., Dufresne, J. L., Le Treut, H., Morcrette, J. J., and Senior, C.: On dynamic and thermodynamic components of cloud changes, Climate Dynam., 22, 71–86, doi:10.1007/s00382-003-0369-6, 2004.; Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., and Webb, M. J.: How well do we understand and evaluate climate change feedback processes?, J. Climate, 19, 3445–3482, doi:10.1175/JCLI3819.1, 2006.; Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Ghan, S. J., Kiehl, J. T., Letreut, H., Li, Z. X., Liang, X. Z., Mitchel, J. F. B., Morcrette, J. J., Randall, D. A., Riches, M. R., Roeckner, E., Schlese, U., Slingo, A., Taylor, K. E., Washington, W. M., Wetherald, R. T., and Yagai, I.: Interpretation of Cloud-climate Feedback As Produced By 14 Atmospheric General-Circulation Models, Science, 245, 513–516, doi:10.1126/science.245.4917.513, 1989.; Cess, R. D., Potter, G. L., Blanchet, J. P., Boer, G. J., Del Genio, A. D., Deque, M., Dymnikov, V., Galin, V., Gates, W. L., Ghan, S. J., Kiehl, J. T., Lacis, A. A., Le Treut, H., Li, Z. X., Liang, X. Z., McAvaney, B. J., Meleshko, V. P., Mitchel, J. F. B., Morcrette, J. J., Randall, D., Rikus, L., Roeckner, E., Royer, J. F., Schlese, U., Sheinin, D. A., Slingo, A., Sokolov, A. P., Taylor, K. E., Washington, W. M., Wetherald, R. T., Yagai, I., and Zhang, M. H.: Intercomparison and Interpretation of Climate Feedback Processes In 19 Atmospheric General-circulation Models, J. Geophys. Res.-Atmos., 95, 16601–16615, doi:10.1029/JD095iD10p16601, 1990.; Charney, J. G.: Ca


Click To View

Additional Books

  • Evidence of an Elevated Source of Nuclea... (by )
  • Deposition of Dinitrogen Pentoxide, N2O5... (by )
  • An Assessment of the Performance of the ... (by )
  • Intermediate and High Resolution Numeric... (by )
  • Radical Chemistry at Night: Comparisons ... (by )
  • Explicit Modeling of Volatile Organic Co... (by )
  • Modeling Ultrafine Particle Growth at a ... (by )
  • A New Indictor on the Impact of Large-sc... (by )
  • Uncertainties and Assessments of Chemist... (by )
  • Volatile Organic Compound Emissions from... (by )
  • Impact of Solar Radiation on Aerosol-clo... (by )
  • The Direct Effect of Aerosols on Solar R... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.