World Library  

QR link for The Simulation of the Antarctic Ozone Hole by Chemistry-climate Models : Volume 9, Issue 17 (03/09/2009)
Add to Book Shelf
Flag as Inappropriate
Email this Book

The Simulation of the Antarctic Ozone Hole by Chemistry-climate Models : Volume 9, Issue 17 (03/09/2009)

By Struthers, H.

Click here to view

Book Id: WPLBN0003995039
Format Type: PDF Article :
File Size: Pages 14
Reproduction Date: 2015

Title: The Simulation of the Antarctic Ozone Hole by Chemistry-climate Models : Volume 9, Issue 17 (03/09/2009)  
Author: Struthers, H.
Volume: Vol. 9, Issue 17
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Austin, J., Schraner, M., Bodeker, G. E., Bekki, S., Peter, T., Rozanov, E.,...Grewe, V. (2009). The Simulation of the Antarctic Ozone Hole by Chemistry-climate Models : Volume 9, Issue 17 (03/09/2009). Retrieved from

Description: National Institute of Water and Atmospheric Research, Lauder, New Zealand. While chemistry-climate models are able to reproduce many characteristics of the global total column ozone field and its long-term evolution, they have fared less well in simulating the commonly used diagnostic of the area of the Antarctic ozone hole i.e. the area within the 220 Dobson Unit (DU) contour. Two possible reasons for this are: (1) the underlying Global Climate Model (GCM) does not correctly simulate the size of the polar vortex, and (2) the stratospheric chemistry scheme incorporated into the GCM, and/or the model dynamics, results in systematic biases in the total column ozone fields such that the 220 DU contour is no longer appropriate for delineating the edge of the ozone hole. Both causes are examined here with a view to developing ozone hole area diagnostics that better suit measurement-model inter-comparisons. The interplay between the shape of the meridional mixing barrier at the edge of the vortex and the meridional gradients in total column ozone across the vortex edge is investigated in measurements and in 5 chemistry-climate models (CCMs). Analysis of the simulation of the polar vortex in the CCMs shows that the first of the two possible causes does play a role in some models. This in turn affects the ability of the models to simulate the large observed meridional gradients in total column ozone. The second of the two causes also strongly affects the ability of the CCMs to track the observed size of the ozone hole. It is shown that by applying a common algorithm to the CCMs for selecting a delineating threshold unique to each model, a more appropriate diagnostic of ozone hole area can be generated that shows better agreement with that derived from observations.

The simulation of the Antarctic ozone hole by chemistry-climate models

Austin, J.: A three-dimensional coupled chemistry-climate model simulation of past stratospheric trends, J. Atmos. Sci., 59, 218–232, 2002.; Austin, J., Shindell, D., Beagley, S. R., Brühl, C., Dameris, M., Manzini, E., Nagashima, T., Newman, P., Pawson, S., Pitari, G., Rozanov, E., Schnadt, C., and Shepherd, T. G.: Uncertainties and assessments of chemistry-climate models of the stratosphere, Atmos. Chem. Phys., 3, 1–27, 2003.; Austin, J. and Wilson, R. J.: Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314, doi:10.1029/2005JD006907, 2006.; Austin, J, Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Brühl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K, Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., and Tian W.: Coupled chemistry climate model simulations of the solar cycle in ozone and temperature, J. Geophys. Res., 113, D11306, doi:10.1029/2007JD009391, 2008.; Bodeker, G. E., Struthers, H. A., and Connor, B. J.: Dynamical Containment of Antarctic Ozone Depletion, Geophys. Res. Lett., 29(7), 1098, doi:10.1029/2001GL014206, 2002.; Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, 2005.; Bodeker, G. E., and Waugh, D. W. (lead authors) Akiyoshi, H., Braesicke, P., Eyring, V., Fahey, D. W., Manzini, E., Newchurch, M. J., Portmann, R. W., Robock, A., Shine, K. P., Steinbrecht, W., and Weatherhead, E. C.: The ozone layer in the 21st century, Chapter 6, in: Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project, Report No 50, 572~pp., Geneva, Switzerland, 2007.; Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere, 3rd Edn., Springer, Dordrecht, The Netherlands, 2005.; Chipperfield, M. P., and Randel, W. J. (lead authors) Bodeker, G. E., Dameris, M., Fioletov, V. E., Friedl, R. R., Harris, N. R. P., Logan, J. A., McPeters, R. D., Muthama, N. J., Peter, T., Shepherd, T. G., Shine, K. P., Solomon, S., Thomason, L. W., and Zawodny, J. W.: Global Ozone: Past and Future, Chapter 4, in: Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project, Tech. Rep. Report No. 47, Geneva, Switzerland, 2003.; Cullen, M. and Davies, T.: Conservative split-explicit integration scheme with fourth-order horizontal advection, Q. J. Roy. Meteor. Soc., 117, 993–1002, 1991.; Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., Matthes, S., Schnadt, C., Stenke, A., Steil, B., Brühl, C., and Giorgetta, M. A.: Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing, Atmos. Chem. Phys., 5, 2121–2145, 2005.; Dameris, M., Matthes, S., Deckert, R., Grewe, V., and Ponater, M.: Solar cycle effect delays onset of ozone recovery, Geophys. Res. Lett., 33, L03806, doi:10.1029/2005GL024741, 2006.; Egorova, T., Rozanov, E., Zubov, V., Manzini, E., Schmutz, W., and Peter, T.: Chemistry-climate model SOCOL: a validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557–1576, 2005.; Eyring, V., Harris, N. R. P., Rex, M., Shepherd, T. G., Fahey, D. W., Amanatidis, G. T., Austin, J., Chipperfield, M. P., Dameris, M., Forster, P. M., Gettelman, A., Graf, H-F., Nagashima, T., Newman, P. A., Pawson, S., Prather, M. J., Pyle, J. A., Salawitch, R. J., Santer, B. D., and Waugh, D. W.: A strategy for process-oriented validation of coupled chemistry-climate models, B. Am. Meteorol. Soc., 86, 1117–1133, 2005.; Eyring, V., Butchart, N., Waugh, D. W., Akiyoshi, H., Austin, J., Bekki, S., Bodeker, G. E., Boville, B. A., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deushi, M., Fioletov, V. E., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Grewe, V., Jourdain, L., Kinnison, D. E., Mancini, E., Manzini, E., Marchand, M., Marsh, D. R., Na


Click To View

Additional Books

  • Technical Note: Sensitivity of 1-d Smoke... (by )
  • A Ut/Ls Ozone Climatology of the Ninetee... (by )
  • Ice Phase in Altocumulus Clouds Over Lei... (by )
  • On the Potential Contribution of Open Le... (by )
  • Oh Reactivity in a South East Asian Trop... (by )
  • Single Particle Diversity and Mixing Sta... (by )
  • Summertime Pm2.5 Ionic Species in Four M... (by )
  • On Inferring Isoprene Emission Surface F... (by )
  • In-cloud Processes of Methacrolein Under... (by )
  • Voc Reactivity and Its Effect on Ozone P... (by )
  • Ftir Spectroscopic Studies of the Simult... (by )
  • Reinterpreting Aircraft Measurements in ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.