World Library  

QR link for Experimentally Measured Morphology of Biomass Burning Aerosol and Its Impacts on Ccn Ability : Volume 14, Issue 9 (16/05/2014)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Experimentally Measured Morphology of Biomass Burning Aerosol and Its Impacts on Ccn Ability : Volume 14, Issue 9 (16/05/2014)

By Giordano, M.

Click here to view

Book Id: WPLBN0003996857
Format Type: PDF Article :
File Size: Pages 35
Reproduction Date: 2015

Title: Experimentally Measured Morphology of Biomass Burning Aerosol and Its Impacts on Ccn Ability : Volume 14, Issue 9 (16/05/2014)  
Author: Giordano, M.
Volume: Vol. 14, Issue 9
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Asa-Awuku, A., Giordano, M., & Espinoza, C. (2014). Experimentally Measured Morphology of Biomass Burning Aerosol and Its Impacts on Ccn Ability : Volume 14, Issue 9 (16/05/2014). Retrieved from

Description: Department of Chemical and Environmental Engineering, University of California – Riverside, Riverside, California, USA. This study examines the morphological properties of freshly emitted and atmospherically aged aerosols from biomass burning. The impacts of particle morphology assumptions on hygroscopic predictions are examined. Chamber experiments were conducted at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Morphological data was obtained through the use of an aerosol particle mass analyzer (APM), scanning mobility particle sizer (SMPS) system and transmission electron microscopy (TEM). Data from these instruments was used to calculate both a dynamic shape factor and a fractal-like dimension for the biomass burning emissions. This data was then used with Κ-Köhler theory to adjust the calculated hygroscopicity for experimentally determined morphological characteristics of the aerosol. Laboratory measurement of biomass burning aerosol from two chaparral fuels show that particles are non-spherical with dynamic shape factors greater than 1.15 for aerosol sizes relevant to cloud condensation nuclei (CCN) activation. Accounting for particle morphology can shift the hygroscopicity parameter Κ by 0.15 or more. To our knowledge, this work provides the first laboratory chamber measurements of morphological characteristics for biomass burning cloud condensation nuclei and provides experimental particle shape evidence to support the variation in reported hygroscopicities of the complex aerosol.

Experimentally measured morphology of biomass burning aerosol and its impacts on CCN ability

Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342, doi:10.1126/science.1092779, 2004.; Baron, P. A., Sorensen, C. M., and Brockmann. J. E.: Nonspherical particle measurements: shape factors, fractals, and fibers, in: Aerosol Measurement: Principles. Techniques, and Applications, edited by: Baron, P. A. and Willeke, K., John Wiley, New York, 705–749, 2001.; Carrico, C. M., Petters, M. D., Kreidenweis, S. M., Collett Jr., J. L., Engling, G., and Malm, W. C.: Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments, J. Geophys. Res., 113, D08206, doi:10.1029/2007JD009274, 2008.; China, S., Mazzoleni, C., Gorkowski, K., Aiken, A. C., and Dubey, M. K.: Morphology and mixing state of individual freshly emitted wildfire carbonaceous particles, Nature Communications, 4, 2122, doi:10.1038/ncomms3122, 2013.; Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678, doi:10.1126/science.250.4988.1669, 1990.; Dahneke, B.: Slip correction factors for nonspherical bodies – I introduction and continuum flow, J. Aerosol Sci., 4, 139–145, 1973a.; Dahneke, B.: Slip correction factors for nonspherical bodies – II free molecule flow, J. Aerosol Sci., 4,147–161, 1973b.; Dusek, U., Frank, G. P., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas, G., Hennig, T., Wiedensohler, A., and Andreae, M. O.: Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics, Atmos. Chem. Phys., 11, 9519–9532, doi:10.5194/acp-11-9519-2011, 2011.; Engelhart, G. J., Hennigan, C. J., Miracolo, M. A., Robinson, A. L., and Pandis, S. N.: Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol, Atmos. Chem. Phys., 12, 7285–7293, doi:10.5194/acp-12-7285-2012, 2012.; Koylu, U. O. and Faeth, G. M.: Structure of overfire soot in buoyant turbulent diffusion flames at long residence times, Comb. Flame, 89, 140–156, 1992.; Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Changes in atmospheric constituents and in radiative forcing, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 131–215, 2007.; Fuchs, N. A.: The Mechanics of Aerosols, Pergamon, New York, 1964.; Giordano, M. R., Short, D. Z., Hosseini, S., Lichtenberg, W., and Asa-Awuku, A.: Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol, Environ. Sci. Technol., 47, 10980–10986, doi:10.1021/es401867j, 2013.; Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review, Rev. Geophys., 38, 513–543, 2000.; Hennigan, C. J., Miracolo, M. A., Engelhart, G. J., May, A. A., Presto, A. A., Lee, T., Sullivan, A. P., McMeeking, G. R., Coe, H., Wold, C. E., Hao, W.-M., Gilman, J. B., Kuster, W. C., de Gouw, J., Schichtel, B. A., J. L. Collett Jr., Kreiden


Click To View

Additional Books

  • Ambient Sesquiterpene Concentration and ... (by )
  • Sulfur Cycle and Sulfate Radiative Forci... (by )
  • Analysis of Particle Size Distribution C... (by )
  • Exploiting Simultaneous Observational Co... (by )
  • The Relative Importance of Competing Pat... (by )
  • Basic Characteristics of Atmospheric Par... (by )
  • Preliminary Signs of the Initiation of D... (by )
  • An Improvement on the Dust Emission Sche... (by )
  • Evaluation of Near-tropopause Ozone Dist... (by )
  • Vertical Profiles of Nitrous Acid in the... (by )
  • Atmospheric Aerosol Compositions in Chin... (by )
  • Evaluation of Geos-5 Sulfur Dioxide Simu... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.