World Library  

QR link for Oceanic Phytoplankton, Atmospheric Aerosol and Raman Scattering Impacts on Space-based Ultraviolet Radiance Measurements : Volume 7, Issue 5 (09/10/2007)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Oceanic Phytoplankton, Atmospheric Aerosol and Raman Scattering Impacts on Space-based Ultraviolet Radiance Measurements : Volume 7, Issue 5 (09/10/2007)

By Hu, R.-m.

Click here to view

Book Id: WPLBN0003997764
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Oceanic Phytoplankton, Atmospheric Aerosol and Raman Scattering Impacts on Space-based Ultraviolet Radiance Measurements : Volume 7, Issue 5 (09/10/2007)  
Author: Hu, R.-m.
Volume: Vol. 7, Issue 5
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2007
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Hu, R., & Sokhi, R. S. (2007). Oceanic Phytoplankton, Atmospheric Aerosol and Raman Scattering Impacts on Space-based Ultraviolet Radiance Measurements : Volume 7, Issue 5 (09/10/2007). Retrieved from http://community.ebooklibrary.org/


Description
Description: Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, College Lane, Hatfield, Herts AL109AB, UK. Oceanic phytoplankton can affect in-water and atmospheric radiation fields. In this study, we develop case 1 (without noncovarying particles) and case 2 (including noncovarying particles) waters model including Raman scattering in order to examine the chlorophyll impacts on the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index and aerosol single scattering albedo. The waters model is coupled with a radiation transfer model (VLIDORT) for calculating TOMS Aerosol Index and retrieval of aerosol single scattering albedo. The retrieval is constrained by chlorophyll concentration from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging SpectroRadiometer (MODIS) data, aerosol optical depth from MODIS, and aerosol vertical profiles from a global chemical transport model (GEOS-CHEM). We find the retrieved aerosol single scattering albedo is strongly influenced by chlorophyll concentration, particularly in the regions of subtropical Atlantic Ocean and Indian Ocean. The maximum deviation between the aerosol single scattering albedo retrieved with and withouout considering chlorophyll can reach 10 percent. Thus, it is important to take account of the phytoplankton impacts on atmospheric remote sensing measurements.

Summary
Oceanic phytoplankton, atmospheric aerosol and Raman scattering impacts on space-based ultraviolet radiance measurements

Excerpt
Bishop J. K. B., Davis, R. E. and Sherman, J. T.: Robotic observations of dust storm enhancement of carbon biomass in the North Pacific, Science, 298, 817–821, 2002.; Chance, K. V. and Spurr, R. D.: Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt., 36, 5224–5230, 1997.; Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326, 655–661, 1987.; De More, S., Demers, S., and Vernet, M.: The Effects of UV Radiation in the Marine Environment, Cambridge University, Cambridge, UK, 2000.; Gordon, H. R.: Contribution of Raman scattering to water-leaving radiance: a reexamination, Appl. Opt., 38, 3166–3174, 1999.; Grainger, J. F. and Ring, J.: Anomalous Fraunhofer line profiles, Nature, 193, 762, 1962.; Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., and Celarier, E.: Global distribution of ultraviolet-absorbing aerosols from Nimbus 7-TOMS data, J. Geophys. Res., 102, 16 911–16 922, 1997.; Hu, R.-M., Martin, R. V., and Fairlie, T. D.: Global retrieval of columnar aerosol single scattering albedo from space-based observations, J. Geophys. Res., 112, D02204, doi:10.1029/2005JD006832, 2007.; Hu, R.-M., Carslaw, K. S., Hostetler, C., Poole, L. R., Luo, B., Peter, T., Fueglistaler, S., McGee, T. J. and Burris, J. F.: Microphysical properties of wave polar stratospheric clouds retrieved from lidar measurements during SOLVE/THESEO 2000, J. Geophys. Res., 107, 8294, doi:10.1029/2001JD001125, 2002.; Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A. and Holben, B. N.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102, 17 051–17 067, 1997.; Kaufman, Y. J., Tanre, D., and Boucher, A: satellite view of aerosols in the climate system, Nature, 419, 215–223, 2002.; King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.: Remote sensing of cloud, aerosol and water vapor properties from moderate resolution imaging spectrometer (MODIS), IEEE Trans. Geosci. Remote.Sens., vol.30, 2–27, 1992.; King, M. D., Kaufman, Y. J., Tanre, D., and Nakajima, T.: Remote sensing of tropospheric aerosols from space: Past, present, and future, Bull. Am. Meteo. Soc., 80, 2229–2259, 1999.; Marshall, B. R., and Smith, R. C.: Raman scattering and in-water ocean optical properties, Appl. Opt., 29, 71–84, 1990.; Martin, R. V., Jacob, D. J., Logan, J. A., et al.: Interpretation of TOMS observations of tropospheric ozone with a global model and in-situ observations, J. Geophys. Res., 107, 4351, doi:10.1029/2001JD001480, 2002.; Morel, A. and Maritorena, A.: Bio-optical properties of oceanic waters: A reappraisal, J. Geophys. Res.106, 7163–7180, 2001.; Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxide emissions constrained by space-based observations of NO2 columns, J. Geophys. Res., 108, 4097, doi:10.1029/2002JD002622, 2003.; Natraj, V., Spurr, R., Boesch, H., Jiang, Y., and Yung,,Y.: Evaluation of errors in neglecting polarization in the forward modeling of O2 a band measurements from space, with relevance to CO2 column retrieval from polarization sensitive instruments, J. Quant. Spectrosc. Radiat. Transfe, 103(2), 245–259, 2006.; Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols over the United States and implications for natural visibility conditions, J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190, 2003.; Park, Y.-J. and Ruddick, K.: Model of remote-sensing reflectance including bidirectional effects for case~1 and case~2 waters, Appl. Opt., 44, 1236–1249, 200

 

Click To View

Additional Books


  • In-cloud Oxalate Formation in the Global... (by )
  • The Role of Carbonyl Sulphide as a Sourc... (by )
  • Uv Albedo of Arctic Snow in Spring : Vol... (by )
  • Accommodation Coefficient of Hobr on Del... (by )
  • Global Risk from the Atmospheric Dispers... (by )
  • An Intensive Study of Aerosol Optical Pr... (by )
  • Characterising Terrestrial Influences on... (by )
  • Simulating Ultrafine Particle Formation ... (by )
  • Does the Poa–soa Split Matter for Global... (by )
  • Influence of Semi-volatile Species on Pa... (by )
  • Measurements of Photo-oxidation Products... (by )
  • Application of Φ-iasi to Iasi: Retrieval... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.