World Library  

QR link for Modelling Chemistry Over the Dead Sea: Bromine and  Ozone Chemistry : Volume 9, Issue 1 (23/02/2009)
Add to Book Shelf
Flag as Inappropriate
Email this Book

Modelling Chemistry Over the Dead Sea: Bromine and Ozone Chemistry : Volume 9, Issue 1 (23/02/2009)

By Smoydzin, L.

Click here to view

Book Id: WPLBN0003998422
Format Type: PDF Article :
File Size: Pages 41
Reproduction Date: 2015

Title: Modelling Chemistry Over the Dead Sea: Bromine and Ozone Chemistry : Volume 9, Issue 1 (23/02/2009)  
Author: Smoydzin, L.
Volume: Vol. 9, Issue 1
Language: English
Subject: Science, Atmospheric, Chemistry
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Glasow, R. V., & Smoydzin, L. (2009). Modelling Chemistry Over the Dead Sea: Bromine and Ozone Chemistry : Volume 9, Issue 1 (23/02/2009). Retrieved from http://community.ebooklibrary.org/


Description
Description: School of Environmental Sciences, University of East Anglia, Norwich, UK. Measurements of O3 and BrO concentrations over the Dead Sea indicate that Ozone Depletion Events (ODEs), widely known to happen in polar regions, are also likely to occur over the Dead Sea due to the very high bromine content of the Dead Sea water. However, we show that BrO and O3 levels as they are detected cannot solely be explained by high Br levels in the Dead Sea water and the release of gas phase halogen species out of sea borne aerosol particles and their conversion to reactive halogen species. It is likely that other sources for reactive halogen compounds are needed to explain the observed concentrations for BrO and O3. To explain the chemical mechanism taking place over the Dead Sea leading to BrO levels of several pmol/mol we used the single column model MISTRA which calculates microphysics, meteorology, gas and aerosol phase chemistry. We performed pseudo Lagrangian studies by letting the model column first move over the desert which surrounds the Dead Sea region and then let it move over the Dead Sea itself. To include an additional source for gas phase halogen compounds, gas exchange between the Dead Sea water and the atmosphere is treated explicitly. Model calculations indicate that this process has to be included to explain the measurements.

Summary
Modelling chemistry over the Dead Sea: bromine and ozone chemistry

Excerpt
Niemi,~T., Ben-Avrahem,~Z., and Gat,~J.: The Dead Sea: The Lake and Its Setting, Oxford Monogr. Geol. Geophys., vol 36, Oxford Univ. Press, New York, 1997.; Alpert,~P., Shafir,~H., and Issahary,~D.: Recent changes in the climate at the Dead Sea – a~preliminary study, Climatic Change, 37, 513–537, 1997.; Barrie,~L A., Bottenheim,~J W., Schnell,~R C., Crutzen,~P J., and Rasmussen,~R A.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138–141, 1988.; Clarke,~R H.: Recommended methods for the treatment of the boundary layer in numerical models, Aust. Meteorol. Mag., 18, 51–73, 1970.; Fickert,~S., Adams,~J W., and Crowley,~J N.: Activation of \chemBr_2 and \chemBrCl via uptake of \chemHOBr onto aqueous salt solutions, J. Geophys. Res., 104, 23719–23727, 1999.; Hebestreit,~K., Stutz,~J., Rosen,~D., Matveev,~V., Peleg,~M., Luria,~M., and Platt,~U.: \mboxDOAS measurements of tropospheric bromine oxide in mid-latitudes, Science, 283, 55–57, 1999.; Liss,~P S. and Slater,~P G.: Flux of gases across the air-sea interface, Nature, 147, 181–184, 1974.; Hönninger,~G., Bobrowski,~N., Palenque,~E R., Torrez,~R., and Platt,~U.: Reactive bromine and sulfur emissions at Salar de Uyuni, Bolivia, Geophys. Res. Lett., 31, L04101, doi:10.1029/2003GL018818, 2004.; Jaenicke,~R.: Aerosol Physics and Chemistry, in: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, V~4b, 391–457, Springer, 1988.; Matveev,~V., Peleg,~M., Rosen,~D., Tov-Alper,~D S., Hebestreit,~K., Stutz,~J., Platt,~U., Blake,~D., and Luria,~M.: Bromine oxide – ozone interaction over the Dead Sea, J. Geophys. Res., 106, 10375–10387, 2001.; Monahan,~E C., Spiel,~D E., and Davidson,~K L.: A~Model of Marine Aerosol Generation via Whitecaps and Wave Disruption, in: Oceanic Whitecaps, edited by: Monahan,~E C. and Niocaill,~G M., 167–174, D Reidel, Norwell, Mass, 1986.; Pozzer,~A., Jöckel,~P., Sander,~R., Williams,~J., Ganzeveld,~L., and Lelieveld,~J.: Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species, Atmos. Chem. Phys., 6, 5435–5444, 2006.; Sander,~S P., Finlayson-Pitts,~B J., Friedl,~R R., Golden,~D M., Huie,~R E., Keller-Rudek,~H., Kolb,~C E., Kurylo,~M J., Molina,~M J., Moortgat,~G K., Orkin,~V L., Ravishankara,~A R., and Wine,~P H.: Chemical Kinetics and Photochemical Data for Use in Atmoshperic Studies, JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena, Evaluation Number~15, 2006.; Stutz,~J., Hebestreit,~K., Alicke,~B., and Platt,~U.: Chemistry of halogen oxides in the troposphere: comparison of model calculations with recent field data, J. Atmos. Chem., 34, 65–85, 1999.; Stutz,~J., Ackermann,~R., Fast,~J D., and Barrie,~L.: Atmospheric reactive chlorine and bromine at the Great Salt Lake, Utah, Geophys. Res. Lett., 29(10), 1380, doi:10.1029/2002GL014812, 2002.; Sverdrup,~H., Johnson,~M., and Fleming,~R.: The Oceans, Their Physics, Chemistry and General Biology, Prentice-Hall, Englewood Cliffs,~N J., 1942.; Tas,~E., Matveeva,~V., Zingler,~J., Luria,~M., and Peleg,~M.: Frequency and extent of ozone destruction episodes over the Dead Sea, Israel, Atmos. Environ., 37, 4769–4780, 2003.; Tas,~E., Peleg,~M., Matveev,~V., Zingler,~J., and Luria,~M.: Frequency and extent of bromine oxide formation over the Dead Sea, J. Geophys. Res., 110, D11304, doi:10.1029/2004JD005665, 2005.; Tas,~E., Peleg,~M., Pedersen,~D U., Matveev,~V., Biazar,~A P., and Luria,~M.: Measurement-based modeling of bromine chemistry in the boundary layer: 1 Bromine chemistry at the Dead Sea, Atmos. Chem. Phys., 6, 5589–5604, 2006.; Tas,~E., Peleg,~M., Pedersen,~D U., Matveev,~V., Biazar,~A P., and Luria,~M.: Measurement-based modeling of bromine chemistry in the Dead Sea boundary layer – Part~2: The influence of \chemNO_2 on bromine chemistry at mid-latitude areas, Atmos. Chem. Phys., 8, 4811–4821, 2008.; Vogt,~R., Crutz

 

Click To View

Additional Books


  • Effects of Climate-induced Changes in Is... (by )
  • Intercomparison Between Aerosol Optical ... (by )
  • Seasonal Variation of Nocturnal Temperat... (by )
  • Dry Deposition of Nitrogen Compounds (No... (by )
  • Characterization of Submicron Aerosols D... (by )
  • Common Inorganic Ions Are Efficient Cata... (by )
  • What Can We Learn About Ship Emission In... (by )
  • Changes of Fatty Acid Aerosol Hygroscopi... (by )
  • A Global Historical Ozone Data Set and S... (by )
  • Fall Vortex Ozone as a Predictor of Spri... (by )
  • Technical Note: Regularization Performan... (by )
  • Suppression of New Particle Formation fr... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.